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Abstract

This paper describes Minerva, an interactive tour-guide robot that was success-
ful ly deployed in a Smithsonian museum. Minerva's software is pervasivelyprob-
abilistic, relying on explicit representationsof uncertainty in perception and con-
trol. This article describesMinerva's major software components, and providesa
comparative analysisof the resultsobtained in the Smithsonian museum. During
two weeks of highly successful operation, the robot interacted with thousandsof
people, both in the museumand throughthe Web, traversingmore than 44km at
speeds of up to 163 cm/sec in the unmodi�e d museum.

1 In tro duction

Robotics is currently undergoing a major change. While in the past, robots have predom-
inately been employed in assembly lines and other well-structured environments, a new
generation of service robots has begun to emerge, designedto assist people in everyday
life [34, 58, 79, 86]. These robots must cope to a much larger degreewith the uncertainty
that inherently exists in real-world application domains. Uncertainty arisesfrom four pri-
mary sources:

1. En vironmen ts. Most interesting real-world environments are unpredictable. This is
the case,for example, if robots operate in the proximit y of people. The type environ-
ments consideredin this paper areextremely dynamic, imposingsigni�cant uncertainty
in the robot's internal perception of the world.

2. Rob ots. Robot hardware, too, is unpredictable. Robots are subject to wear-and-tear,
and internal sensorsfor measuring robot actuation, such as odometry, are often only
approximately correct.

3. Sensors. Sensorsare inherently limited. The physical processthat generatessensor
measurements typically inducessigni�cant randomnesson its outcome,making sensor



measurements noisy. Moreover, the range and resolution of sensorsare intrinsically
limited. Such limitations make it often impossible to measureimportant quantities
when needed.

4. Mo dels. Models of physical phenomenasuch as robots and robot environments are
inherently approximate. Thus, the useof models introducesadditional uncertainty, a
fact that is still mostly ignored in robotics.

This article focuseson the probabilistic paradigm for robotics. This paradigm pays tribute
to the inherent uncertainty in robot perception, relying on explicit representations of un-
certainty when determining what to do. Viewed probabilistically , perception is a statistical
state estimation problem, where information deduced from sensordata is represented by
probabilit y distributions. Planning and control is a decision-theoreticutilit y optimization
problem, in which a robot seeksto maximize expected utilit y (performance) relative to its
internal beliefs. Our central conjecture is that the probabilistic approach is a viable solution
to a large range of robot problems involving sensingin the physical world [104].

The focus of this article is a speci�c robot system, developed to evaluate the idea of
probabilistic robotics in a complex real-world setting. Minerva, which is shown in Figure 2,
is an interactive museumtour-guide robot. In the fall of 1998,Minerva wasdeployed in one
of the largest museumin the US: The Smithsonian Museum of American History in Wash-
ington, DC. Minerva operated in the center areaof the museum's�st 
o or, guiding visitors
through a decade-oldexhibition known asMaterial World. Figure 1 shows a panoramicview
of the exhibition's main area. The robot's task involved attracting peopleand explaining to
them the various exhibits while guiding them through the museum. The robot alsoenabled
remote users to visit the museum through a Web link. This link allowed people to watch
imagescollectedin the museum,and to control the robot's operation. During its 14day-long
deployment, Minerva traversedmore than 44 km through crowds of people,giving 620tours
to peopleand visiting more than 2,600exhibits.

Operating in a museumis a challenging task, di�eren t in many aspects from more tra-
ditional operation domains of mobile robots. The museum environment can be densely
crowded, with dozensof people gathering around the machine. Consequently , the robot's
sensor measurements are extremely erroneous, making simple tasks such as localization
challenging. In fact, peopleoften seekto compromisethe system,which imposesadditional
challengeson the software design. We did not modify the environment in any way to facili-
tate the robot's operation. Thus, the robot had to rely on natural cuesfor its orientation.
A further challengearosefrom the needto operate at walking speedwhile at the sametime
avoiding collisions with people at all costs. Collisions with exhibits and other obstaclesin
the museumwerealmost equally undesirable,as many of the museum'sexhibits werefragile
and precious. A particular challenge was the fact that not all obstaclesand hazards were
\visible" to the robot's sensors.For example, the museumpossesseda downward escalator
in closeproximit y to the robot's operational area. Falling down this escalator was to be
avoided; however, noneof the robot's sensorswereable to detect this hazard. Similarly , sev-
eral obstacleswere encasedin glasscases;however, the robot's primary obstacledetection
sensors,a pair of laser range �nders, uselight for measuringrange and henceare unable to
detect glass. The presenceof such invisible hazardsraised the question as to how to avoid
them if they cannot even be detected.

At the sametime, the museumenvironment createsa challenging human robot interac-
tion problem. In the Smithsonian museum, most of the interaction took place over short
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Figure 1: Panoramic view of the Material World Exhibition, Minerv a's major operation area, which is
located in the entrance area of the Smithsonian's National Museum of American History (NMAH).

periods of time, e.g., 10 minutes. People who approached the robot were typically inex-
periencedwith robotic technology. However, providing visitors with complicated operation
manuals was not an option. Instead, the robot had to be self-explanatory and engaging.
Once leading a tour, the robot had to communicate e�ectiv ely its intents and goals. People
seemedto enjoy blocking the robot's path|so how can a robot e�ectiv ely make progress
even with dozensof people around? At other times, the challenge was to attract people,
e.g., between tours when one group of people had just left. Finally , one challenge was the
designof a Web interface, enabling peopleall around the world to pay a \virtual visit" to
the museum. Museumsare currently bound by their location when trying to attract people.
The useof robots promisesto open up museumsto peopleall over the world, which could
fundamentally alter the way museumsoperate. Minerva, thus, was a unique testbed for
Internet technology using robots in public places.

As apparent from our domain description, uncertainty indeed plays a primary role in
the Minerva project. Minerva's software was pervasively probabilistic, relying on explicit
representation of uncertainty at various areasof perception, planning, and control. Minerva
employs a probabilistic algorithm for learning mapsof its environment. Oncea map hasbeen
learned, another probabilistic algorithm, called Markov localization, is used for localizing
Minerva relative to its map. To generatemotion, Minerva usesa probabilistic motion planner
that anticipates future uncertainty, thereby reducing the chancesof loosing track of the
robot's position. The motion commandsare then processedby a reactive collision avoidance
module, which considersuncertainty when avoiding invisible hazards. Minerva alsoemploys
learning algorithms at the user interaction level, enabling it to learn behaviors for attracting
people,and to composetours soasto meet the desiredtour-length regardlessof how crowded
the museumis.

Minerva is a secondgenerationrobot, following the successfulexampleof the robot Rhino
developed by the sameteam of researchers [15]. Rhino was deployed in the DeutschesMu-
seum in Bonn in 1997, and shared many of the sameprobabilistic navigation algorithms.
Minerva, however, went beyond Rhino in various ways, from using new probabilistic algo-
rithms for learning maps from scratch, to a much-improved skill set for people interaction.
This article describes the major software components of the Minerva robot, and compares
them to those implemented on Rhino, Minerva's predecessor. We will argue throughout
that the probabilistic nature of Minerva's primary software components wasessential for its
success.

2 Soft ware Arc hitecture Overview

Minerva's software architecture consists of approximately 20 distributed modules, which
communicate asynchronously, as shown in Table 1. At the lowest level, various interface
modules communicate directly with the robot's sensors(lasers, sonars, cameras,motors,
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(a) (b) (c)

Figure 2: (a) Minerv a. (b) Minerv a gives a tour in the Smithsonian's National Museum of American
History . (c) In teraction with museum visitors.

pan/tilt unit, face,speech unit, touch-sensitive display, Internet server, etc.) and e�ectors.
On top of that, various navigation modules perform functions like mapping, localization,
collision avoidance,and path planning. The interaction modules determine the \emotional
state" of the robot, control its head direction, and determine how to engagethe people
around it using soundsor speech. The Web interface consistsof modules concernedwith
displaying information such as imagesand the robot's position on the Web, and with receiv-
ing Web user commands. Finally , the high-level modulesperform global missionscheduling
and control.

The main components of the data and control 
o w are as follows. Sensorreadings, in
particular laser rangescans,sonarscans,imagesfrom a camerapointed towards the ceiling,
and odometry readings,are contin uously broadcastacrossthe network of modules. O�-line,
before the deployment, these data are collected by the mapper, which builds a geometric
map of the environment that is usedby the localization module and the planning modules.
On-line, during regular runtime, the map is not modi�ed. Instead, the sensordata are sent
to the localization module, which estimatesthe robot's poserelative to the map. The pose
estimatesare passedon to several modules, most notably the mission planner, the motion
planner, and the reactive collision avoidancemodule. The missionplanner monitors the user
interfaceand the Webfor usercommands. It alsoexchangesinformation with the interaction
modules, which control Minerva's face, voice, display, pan/tilt unit, etc. Once a tour has
beenchosen,it informs the motion planner of the location of the next exhibit to visit. The
motion planner then generatesvia-points, which are passedon to the collision avoidance.
The collision avoidanceusesthe sensordata (sonars,lasers)to \translate" the via-points into
motor commands(forward and rotational velocities). Additionally , a related module uses
the actual location estimatesand the map to generate\virtual" obstaclesthat correspond to
hazards in the map. These virtual measurements are also considerd in collision avoidance.
To accommodate changesin the robot's path that might arise from unexpected obstacles,
the motion planner concurrently replans and generatesnew via-points as necessary.

Most of Minerva's software can adapt to the available computational resources.For ex-
ample, modules that consumesubstantial processingtime, such as the motion planner or
the localization module, can produce results regardlessof the time available for computa-
tion. The more processingcyclesthat are available, however, the more accurate the result.
In Minerva's software, resource
exibilit y is achieved by two mechanisms: selective data
processingand any-time algorithms [22, 108]. Selective data processingis achieved by con-
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high-lev el con trol and learning
(mission planning, scheduling)
human in teraction mo dules

(\emotional" FSA, Web interface)
na vigation mo dules

(lo calization , map learning, path planning)
hardw are in terface mo dules

(motors, sensors, In ternet)

Table 1: Minerv a's layered software architectu re.

sidering only a subsetof the available data, which for exampleis the casein the localization
routine. Other modules, such as the motion planning module, are any-time. That is, they
can quickly draft initial solutions, which are then re�ned incrementally , so that an answer
is available when needed.

Minerva's software doesnot possessa centralized clock or a centralized communication
module. Synchronization of di�eren t modulesis strictly decentralized [36, 91]. Time-critical
software (e.g., all devicedrivers), and software that is important for the safety of the robot
(e.g., collision avoidance),are run on the robot's on-board computers. Higher-level software,
such as the task control module, is run on stationary o�-b oard computers. This software
organization has been found to yield robust behavior even in the presenceof unreliable
communication links (speci�cally the radio link which connectedthe on-board and o�-b oard
computers) and various other events that can temporarily delay the message
o w or reduce
the available computational resources. The modular, decentralized software organization
easesthe task of softwarecon�guration. Each module addsa certain competence,but not all
modulesarerequired to run the robot. The ideaof decentralized, distributed decisionmaking
has beenat the core of research on behavior-basedrobotics over the last decade[1, 14, 78],
but heremodulesare typically much lower in complexity (e.g., simple �nite state machines).

3 Mobile Rob ot Lo calization

3.1 The Lo calization Problem

A prime example of probabilistic computing in Minerva is localization. Localization is the
problem of determining a robot's posefrom sensordata, where the term poserefers to the
robot x-y-coordinates in the environment along with its heading direction. Localization
enablesthe robot to �nd its way around the environment, and to avoid \in visible" hazards
such as the escalator. It is therefore an essential component of Minerva's and Rhino's
softwarearchitecture. The readershouldnotice that localization is a key component in many
other successfulmobile robot systems(seee.g., [9, 61, 57]). Occasionally, the localization
problem hasbeenreferredto as \the most fundamental problem to providing a mobile robot
with autonomouscapabilities" [21].

The literature distinguishes three types of localization problems, in increasingorder of
di�cult y:

1. Position trac king. Here the initial robot poseis known, and the goal of localization
is to compensatesmall odometry error as the robot moves. Typically, the uncertainty
in position tracking is local, making unimodal state estimators such as Kalman �lters
applicable [2, 44, 61, 85].
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2. Global localization. If the robot does not know its initial pose, it facesa global
localization problem. To localizeitself from scratch, a robot must be able to cope with
ambiguities and multiple beliefsduring localization.

3. Rob ot kidnapping [35]. This problem is a variant of the global localization problem
in which a well-localizedrobot is tele-ported to somerandom posewithout being told.
It is harder than the global localization problem, sincethe robot might falsely believe
it is somewhereelse. Robot kidnapping simulates catastrophic failure of a localization
routine and tests a robot's abilit y to recover from such failures|a critical abilit y for
truly autonomousrobots.

Minerva's localization algorithm can cope with all three localization problems.

3.2 Probabilistic Lo calization

Approachedprobabilistically , the localization problem is a density estimation problem, where
a robot seeksto estimate a posterior distribution over the spaceof its posesconditioned on
the available data. Denoting the robot's poseat time t by st and the data leading up to
time t by d0::: t , the posterior is conveniently written as

p(st jd0::: t ; m): (1)

Here m is the model of the world (e.g., a map). We will denote this posterior bt (st ), and
refer to it as the robot's belief state at time t. For now we will assumethe robot is given a
map. Further below, we will describe our approach for learning a map from data.

Minerva useslaser range scansand imagescollected from a camerapointed towards the
ceiling for localization. Such sensordata come in two 
a vors: Data that characterizesthe
momentary situation (e.g., camera images, laser range scans),and data relating to change
of the situation (e.g., motor controls or odometer readings). Referring to the former as
observationsand the latter asaction data, let us without lossof generality assumethat both
typesof data arrive in an alternating sequence:

d0::: t = o0; a0; o1; a1; : : : ; at � 1; ot : (2)

Here ot denote the observation and at denotesthe action data item at time t.
To estimate the desired posterior p(st jd0::: t ; m), our approach resorts to a Markov as-

sumption, which states that the past is independent of the future given knowledge of the
current state. The Markov assumption is often referred to as the static world assumption,
since it assumesthe robot's pose is the only state in the world that would impact more
than just one isolated sensorreading. Clearly, this is not the casein the museumsfull of
people. However, for now we will consideronly the static case;an extensionfor dealing with
environment dynamics is described further below.

Armed with the necessaryassumptions, the desired posterior is now computed using
a recursive formula, which is obtained by applying Bayes rule and the theorem of total
probabilit y, exploiting the Markov assumption twice:

bt (st ) = p(st jo0; : : : ; at � 1; ot ; m)
Bayes

= � t p(ot jo0; : : : ; at � 1; st ; m) p(st jo0; : : : ; at � 1; m)
Mark ov= � t p(ot jst ; m) p(st jo0; : : : ; at � 1; m)
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Figure 3: Probabilistic generalizatio n of mobile rob ot kinematics: Each dark line illustrates a commanded
rob ot path, and the shaded area shows the posterior distribution of the rob ot's pose. The dark er an area,
the more lik ely it is. The path in the left diagram is 40 meters and the one on the righ t is 80 meters long.

Tot :Prob := � t p(ot jst ; m)
Z

p(st jo0; : : : ; at � 1; st � 1; m) p(st � 1jo0; : : : ; at � 1; m) dst � 1

Mark ov= � t p(ot jst ; m)
Z

p(st jat � 1; st � 1; m) p(st � 1jo0; : : : ; ot � 1; m) dst � 1

= � t p(ot jst ; m)
Z

p(st jat � 1; st � 1; m) bt � 1(st � 1) dst � 1: (3)

Here � t is a constant normalizer, which ensuresthat the result sums up to 1. Within the
context of mobile robot localization, the result of this transformation

bt (st ) = � t p(ot jst ; m)
Z

p(st jat � 1; st � 1; m) bt � 1(st � 1) dst � 1 (4)

is often referred to as Markov localization [16, 39, 52, 56, 94], but it equally represents the
basicupdate equation in Kalman �lters [54], Hidden Markov models[76], and dynamic belief
networks [23, 83]. Kalman �lters [54], which are historically the most popular approach for
position tracking, represent beliefs by Gaussians. The vanilla Kalman �lter also assumes
Gaussiannoise and linear motion equations; however, extensionsexist that relax someof
theseassumptions[51, 66]. Kalman �lters have beenapplied with great successto a range
of tracking and mapping problems in robotics [62, 96]; though they tend not to work well
for global localization or the kidnapped robot problem. Markov localization using discrete,
topological representations for bwerepioneered(amongothers) by Simmonsand Koenig [94],
whosemobile robot Xavier traveledmore than 230kilometers through CMU's hallways over
a period of several years[92, 93].

To implement Equation (4), oneneedsto specify p(st jat � 1; st � 1; m) and p(ot jst ; m). Both
densitiesare usually time-invariant, hencethe time index can be omitted. The �rst density
characterizesthe e�ect of the robot's actions a on its poseand can therefore be viewed as
a probabilistic generalization of mobile robot kinematics; seeFigure 3 for examples. The
other density, p(ojs;m), is a probabilistic model of perception. Figure 4 illustrates a sensor
model for range �nders, which usesray-tracing and a mixture of four parametric densities
to calculate p(ojs;m). In our implementation, both of these probabilistic models are quite
crude, using uncertainty to account for model limitations. For brevity, we omit a more
detailed description of thesemodels and instead refer the reader to [39].

Figure 5 illustrates how Minerva localizesitself from scratch (global localization). Ini-
tially , the robot does now know its pose;thus, p(s0) is distributed uniformly . After incor-
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Figure 4: Probabilistic sensor model for laser range �nders: (a) The density p(ojs; m) relates the actual,
measured distance of a sensorbeam to its expected distance computed by ray tracing, under the assumption
that the rob ot's pose is s. A comparison of actual data and our (learned) mixture model shows good
correspondence. Diagram (b) shows a speci�c laser range scan o, for which diagram (c) plots the density
p(ojs; m) for di�eren t locations in the map.

porating one sensorreading (laser and camera) according to the update rule (4), p(s1) is
distributed as shown in Figure 5a. While this distribution is multi-mo dal, high probabilit y
massis already placednear the correct pose. After moving forward and subsequently incor-
porating another laser range measurement, the resulting posterior p(s2) is centered on the
correct pose,as shown in Figure 5b.

3.3 Mon te Carlo Lo calization

Of fundamental importancefor the designof probabilistic algorithms is the choiceof the rep-
resentation. During the museumexhibit, we useda piecewiseconstant grid-representation
for representing the belief b, described in detail in [39]. More recently , we developed an alter-
native representation which is both more e�cien t than grids and more accurate. Therefore,
we will describe it here.

The Monte Carlo localization algorithm (MCL) is a version of Markov localization that
usessamplesto approximate the belief b [24, 25, 29, 37, 60]. It is basedon the SIR algorithm
(SIR stands for sampling/imp ortance resampling) originally proposed in [82], and is a
version of particle �lters [30, 31, 64, 75]. Similar algorithms are known as condensation
algorithm [49, 50] in computer vision, and survival of the �ttest in AI [55]. The basic idea of
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(a) (b)

rob ot -rob ot -

Figure 5: Global localization: (a) Pose posterior bt (st ) after integrating a �rst laser scan (pro jected into
2D). The dark er a pose, the more lik ely it is. (b) shows bt (st ) after integrating a second sensor scan. Now
the rob ot knows its pose with high certain ty/a ccuracy.

MCL is to approximate b(s) with a weighted set of samples(particles), so that the discrete
distribution de�ned by the samplesapproximates the desiredone. The weighting factors are
called importance factors [82]. The initial belief is represented by a uniform sampleof size
k, that is, a set of k samplesdrawn uniformly from the spaceof all poses,annotated by the
constant importance factor k � 1. MCL implements the update equation (4) by constructing
a new sampleset from the current onein responseto an action item at � 1 and an observation
ot :

1. Draw a random samplest � 1 from the current belief bt � 1(st � 1), with probabilit y given
by the importance factors of the belief bt � 1(st � 1).

2. For this st � 1, randomly draw a successorposest , accordingto the distribution p(st jat � 1; st � 1; m).

3. Assign the (unnormalized) importance factor p(ot jst ; m) to this sampleand add it to
the new sampleset representing bt (st ).

4. Repeat Step 1 through 3 k times. Finally , normalize the importance factors in the
new sampleset bt (st ) so that they add up to 1.

Figure 6 shows MCL in action. Shown in the �rst diagram is a belief distribution (sample
set) at the beginning of the experiment when the robot does not (yet) know its position.
Each dot is a three-dimensionalsample of the robot's x-y-location along with its heading
direction. The seconddiagram shows the belief after a short motion segment, incorporating
several sensormeasurements.. At this point, most samplesconcentrate on the center region
in the museum. However, the symmetry of this region makesit impossibleto disambiguate
them. Finally , the third diagram in Figure 6 shows the belief a few moments later, where
all samplesfocus on the correct pose.

The MCL algorithm is in fact quite e�cien t [24, 25, 37]; slight modi�cations of the basic
algorithms [60, 106] require as few as100samplesfor reliable localization, consumingonly a
small fraction of time available on a low-end PC. Our implementation is any-time [22, 108],
meaningthat it canadapt to the available computational resourcesby dynamically adjusting
the number of samplesk. With slight modi�cations|suc h as sampling from the observa-
tion [106]|MCL hasbeenshown to recover gracefully from global localization failures, such
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Figure 6: Global localization of a mobile rob ot with the MCL algorithm, using a camera pointed at the
ceiling and the ceiling map shown in Figure 10b.

as manifestedin the kidnapped robot problemmentioned above, wherea well-localizedrobot
is teleported to somerandom location without being told. Another feature of MCL (and
Markov localization in general) is that the underlying models|in particular p(sja; s;m),
p(ojs;m) and the map|can be extremely crude and simplistic, since probabilistic models
carry their own notion of uncertainty. This makes probabilistic algorithms relatively easy
to code. In comparison, traditional robotics algorithms that rely on deterministic models
make much stronger demandson the accuracyof the underlying models.

3.4 Distance �lters for Finding People and Filtering Sensor Data

One of the key characteristics of the museum environment is that people populate it. At
peak museum hours, we often counted more than 100 people surrounding the robot. The
presenceof people raisesadditional challengesto the robot's software. In particular, the
Markov assumption in Markov localization requiresa static environment, that is, onewhere
the robot's pose is the only state that changes. People induce systematic noise on sensor
data, invalidating the Markov assumption. While plain Markov localization (and MCL) is
usually robust to small disturbances of this kind, it may easily fail when the number of
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Figure 7: Distance �ltering for locating people. Diagram (a) shows a laser range scan in a crowded situation,
pro jected at the rob ot's most lik ely position. The distance �lter sorts each individual measurement into two
bins: \authen tic " measurements, shown in (b), and measurements believe to correspond to people, shown
in (c).

nearby people is large, and if people intentionally attempt to confusethe robot|b oth of
which frequently happenedin the Minerva exhibit.

Oneapproach for accommodating peopleis to include people'slocation in the state s that
is being estimated. While such an approach is completely legitimate, it posesseriouscom-
putational problems, sincethe state spaceis now much larger. It also requiresprobabilistic
models of the motion of crowds.

Minerva usesan alternativ e approach. It �lters range measurements using a distance
�lter [39]. The distance �lter sorts individual measurements into two bins: one that is
believed to be \authentic," by which we mean that the sensordetected a known obstacle,
and one that is believed to originate from a personor another unknown obstacle.

The idea of the distance �lter builds on a crucial property of rangemeasurements: Mea-
surement errors induced by people make range measurements shorter, not longer. Thus,
readings are �ltered out which, with high probabilit y, are too short. More speci�cally , let
o� denote a single measurement (beam) taken at angle � relative to the robot. If the pose
st is known, the expectation of this measurement is given by

E[o� jst ] =
Z

o� p(o� jst ; m) dot (5)

Thus, the probabilit y that a reading o�t is shorter than expected if o�t < E[o� jst ]. Of
course, in practice the posest is unknown, and all we have is the belief bt (st ). Thus, the
integral

Z
I o�t <E [o� j st ] bt (st ) dst (6)

is the probabilit y that o�t is a shorter-than-expected reading under the belief bt . Here
I is the indicator function, which is 1 i� its argument is true. To accommodate people in
localization, our approach simply discardsmeasurements that with high probabilit y (.99) are
short. It usesonly the remaining measurements for localization. A systematic comparison
and evaluation in [39] illustrates that distance �lters are extremely e�ectiv e in �ltering our
undesiredsensormeasurements, while retaining su�cien tly many authentic measurements
to ensureaccurateand reliable localization. Our comparisonalsoshows that distance�lters
are capableof recovering from global localization failures (robot kidnapping).
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An additional bene�t of the distance �lter arisesfrom the fact that it aids human robot
interaction. Several of Minerva's interaction strategies described below rely on the abilit y
to �nd people.

4 Concurren t Mapping and Lo calization

We now return to the question of acquiring maps. Recall that our localization algorithm
relies on a map m of the environment. In Rhino, Minerva's predecessor,the map was con-
structed by hand. However, manual mapping is tedious, and precludesthe rapid installation
of a tour-guide robot. Minerva, in contrast, learns the map from sensordata.

From a statistical standpoint of view, concurrent mapping and localization is an estima-
tion problem, similar to localization. This estimation problem is much higher dimensional
than the robot localization problem. For example, some of the grid maps shown in this
paper are described by 50,000parameters. What makesthis problem particularly di�cult
is its chicken-and-eggnature, which arisesfrom the fact that position errors accruedduring
mapping, are di�cult to compensate[77]. Put di�eren tly , localization with a map is rela-
tiv ely easy, as is mapping with known locations. The problem of simultaneously localizing
and mapping, however, is hard.

Currently , the best mapping algorithms are all probabilistic, following the samebasic
state estimation framework described above. One popular family of approaches, known as
SLAM algorithms [18, 19, 61, 62, 96], employs Kalman �lters [54, 66] for concurrently es-
timating robot posesand maps. Unfortunately, this approach requires that features in the
environment can be uniquely identi�ed|whic h is a consequenceof the Gaussiannoise as-
sumption inherent in Kalman �lters. For example,it doesnot su�ce to know that the robot
facesa doorway; instead, it must know which doorway it faces,to establish correspondence
to previous sightings of the samedoorway. This limitation is of great practical importance.
It is common practice to extract a small number of identi�able features from the sensor
data, at the risk of discarding all other information. Somerecent approachesovercomethis
assumption by \guessing" the correspondencebetweenmeasurements at di�eren t points in
time, but they tend to be brittle if those guessesare wrong [43, 65]. In the Smithsonian
museum environment, we know of no set of uniquely identi�able features that would give
metric maps of the nature required for localization.

4.1 EM Mapping

Minerva usesan alternativ eapproach for mapping, which is basedon the samemathematical
framework as the Kalman �lter approach above [105]. In particular, our approach seeksto
estimate the mode of the posterior, �m = argmaxm p(mjd), instead of the full posterior
p(mjd). This might appear quite modest a goal compared to the full posterior estimation
in the Kalman �lter approach. However, if the correspondence is unknown (and noise is
non-Gaussian),this in itself is a challenging problem.

To see,we note that the posterior over maps can be obtained in closedform:

bt (m) = p(mjd0::: t ) =
Z

bt (st ; m) dst (7)

= � 00
t p(m)

Z Z
� � �

Z tY

� =0

p(o� js� ; m)
tY

� =1

p(s� ja� � 1; s� � 1 ; m) ds1 ds2 : : : dst ;
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where the initial pose is|somewhat arbitrarily|set to s0 = h0; 0; 0i . This expressionis
obtained from (4) by integrating over st , followedby recursive substitution of the belief from
time t � 1 to time 0, and resorting of the resulting terms and integrals. For convenience,
we will assumea uniform prior p(m), transforming the problem into a maximum likelihood
estimation problem. Notice that Equation (7) integrates over all possiblepaths, a rather
complex integration. Unfortunately, we know of no way to calculate �m analytically for data
setsof reasonablesize.

To �nd a solution, we notice that the robot's path can be considered\missing variables"
in the optimization problem; knowing them indeed greatly simpli�es the problem. The
statistical literature has developed a range of algorithms for such problems, one of which is
the EM algorithm [27, 68]. This algorithm computesa sequenceof maps,denotedm [0] , m[1] ,
. . . , which successively increasing likelihood. The superscript [� ] is not to be confusedwith
the time index t or the index of a particle i ; all it refersto is the iteration of the optimization
algorithm.

EM calculates a new map by iterating two steps, an expectation step, or E-step, and a
maximization step, or M-step:

� In the E-step, EM calculates an expectation of a joint log-likelihood function of the
data and the poses,conditioned on the K -th map m [K ] (and conditioned on the data):

Q[mjm[K ]] = Em [K ] [logp(s0; : : : ; st ; d0::: t jm[K ]) j d0::: t )]: (8)

The key observation is that computing Q involvescalculating the posterior distribution
over posess0; : : : ; st conditioned on the K -th model m[K ] . We have already seen
how to estimate the posterior over posesgiven a map, in the section on localization.
Technically, calculating (8) involvestwo Markov localization runs through the data, a
forwards run and a backwards run, sinceall data has to be taken into account when
computing the posterior p(s� jd0::: t ) (the algorithm above only considersdata up to
time � ). We also note that in the very �rst iteration, we do not have a map. Thus,
Q[mjm[K ]] calculates the posterior for a \blind" robot, i.e., a robot that ignores its
measurements o1; : : : ; ot .

� In the M-step, the most likely map is computed given the poseestimatesobtained in
the E-step. This is formally written as

m[K +1] = argmax
m

Q[mjm[K ] ]: (9)

Technically, this is still a very di�cult problem, since it involves �nding the opti-
mum in a high-dimensional space. However, it is common practice to decomposethe
problem into a collection of one-dimensionalmaximization problems, by stipulating
a grid over the map and solving (9) independently for each grid cell. The maximum
likelihood estimation for the resulting single-cell random variables is mathematically
straightforward.

Iterations of both steps tends to increasethe log-likelihood. Details of the mathematical
derivation and the implementation of this algorithm can be found in [105].
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(a) (b)

Figure 8: (a) Raw data collected in a large open hall (the Dinosaur Hall in the Carnegie Museum of Natural
History , Pittsburgh, PA) and (b) map constructed using EM and occupancy grid mapping.

4.2 Occupancy Grid Maps

In a �nal mapping step, Minerva transforms its maps into occupancygrids [33, 71]. Occu-
pancy grids are widely used in mobile robotics [8, 32, 45, 103, 107]. Most state-of-the-art
algorithms for generating such maps are probabilistic.

Occupancygrid mapping addressesa much simpler problem than the oneabove, namely
the problem of estimating a map from a set of sensormeasurements given that one already
knows the corresponding poses. Let hx; yi denote a speci�c grid cell, and mhxy i

t be the
random variable the models its occupancyat time t. Occupancy is a binary concept; thus,
we will write mhxy i

t =1 if a cell is occupied,and mhxy i
t = 0 if it is not. Substituting mhxy i

t into
Equation (4) under the consideration that this is a discrete random variable yields

bt (m
hxy i
t ) = � t p(ot jm

hxy i
t )

1X

m hxy i
t = 0

p(mhxy i jat � 1; mhxy i
t � 1 ) bt � 1(mhxy i

t � 1 ); (10)

which in static worlds simpli�es to

bt (mhxy i ) = � t p(ot jmhxy i ) bt � 1(mhxy i ) = � t
p(mhxy i jot ) p(ot )

p(mhxy i )
bt � 1(mhxy i ): (11)

The secondtransformation pays tribute to the fact that in occupancy grid mapping, one
usually is given p(mhxy i jot ) instead of p(ot jmhxy i ) [103]. One could certainly leave it at this
and calculate the normalization factor � t at run-time. However, for binary random variable
the normalizer can be eliminated by noticing that the so-calledodds, which is the following
quotient:

bt (mhxy i =1)
bt (mhxy i =0)

=
p(mhxy i =1 jot )
p(mhxy i =0 jot )

p(mhxy i =0)
p(mhxy i =1)

bt � 1(mhxy i =1)
bt � 1(mhxy i =0)

: (12)

As is easily shown [103], this expressionhas the closed-formsolution

bt (mhxy i ) = 1 �

(

1 +
p(mhxy i )

1 � p(mhxy i )

"
tY

� = 0

p(mhxy i jo� )
1 � p(mhxy i jo� )

1 � p(mhxy i )
p(mhxy i )

#) � 1

: (13)
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(a)

(b)

(c)

Figure 9: (a) Raw data collected in the Smithsonian museum. (b) Data after adjusting the scansusing EM.
(c) Final occupancy grid map. This map is approximately 110 meters wide and is the largest we ever built.
However, a smaller map (constructe d from a di�eren t data set) was used for navigation , due to changes in
the operational area of the rob ot.
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(a) (b)

Figure 10: (a) Occupancy map of the center portion of the Smithsonian museum. (b) Mosaic of the
museum's ceiling. The various brigh t spots correspond to ligh ts. The center portion of the ceiling contains
an opening|the ligh ts there are approximately 15 meters higher.

For example,Figure 8a shows a raw data set of a large hall (approximately 50 meterswide),
along with the result of �rst applying EM, and then occupancygrid mapping using the poses
estimated with EM (Figure 8b). Figure 9 shows a map of a fraction of the Smithsonian
museum. These data were collected approximately six months before the exhibition, to
develop and test our navigation routines. Figure 9a shows the raw data. Here the robot
accruedan odometry error of 70 metersand approximately 180degrees.Figure 9b shows the
result of EM mapping. The �nal occupancygrid map is shown in Figure 9c. This map is over
110meterswide. While it is geometrically somewhatinaccurate (seethe upper boundary of
the areaon the left, which should be a straight line), it is su�cien tly accuratefor navigation
purposes. However, this map doesnot cover the robot's entire operation range, which was
de�ned after gathering thesedata. Thus, we collected a di�eren t data set just days before
the exhibition began. The resulting map is shown in Figure 10a. This map is approximately
65 meters wide.

4.3 Ceiling Maps

Rhino, Minerva's predecessor,relied on lasersfor localization. To deal with the large open
spaces,Minerva additionally had a camera pointed at the ceiling, which we used approxi-
mately half of the time to augment the laser for localization. The ceiling map is a large-scale
mosaicof a ceiling's texture. Such ceiling mosaicsare more di�cult to generatethan occu-
pancy maps. This is becausethe height of the ceiling is unknown, which makes it di�cult
to translate coordinates in the image plane into real-world coordinates.

A typical ceiling mosaic is shown in Figure 10b. Our approach usesthe (previously
learned) occupancy map to pre-adjust errors in the odometry. While those posesare not
accurate to the precision that can be attained using the high-resolution vision sensors,they
eliminate the di�cult-to-solv eglobal alignment problem. The likelihood p(mjd) of the ceiling
map is then maximized by searching in the spacethe following parameters: the poses at
which each image was taken, the height of ceiling segments, and two additional parameters
per imagespecifying variations in lighting conditions. Our approach employs the well-known
Levenberg-Marquardt algorithm [28] for optimization. As a result, the imagesare brought
into local alignment, the ceiling height is estimated, and a global mosaic is constructed.
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Figure 10b shows the ceiling mosaic of the robot's operational range. A typical run for
an environment of its size involves optimizing over about 3000 unknown variables, which
requires approximately 30 minutes of processingtime on a state-of-the-art computer. In
follow-up research, we developed a probabilistic mosaicingalgorithm which doesnot require
pre-adjustment using occupancygrid maps [26].

5 Planning and Navigation

Minerva employs three modulesconcernedwith planning and navigation: a low-level reactive
collision avoidancemodule, a motion planner for moving from one exhibit to another, and
a mission planner for scheduling tours and battery changes.

5.1 Collision Av oidance

Minerva's collision avoidancemodule controls the momentary motion direction and velocity
of the robot to avoid collisions with obstacles|p eople and exhibits alike. Many collision
avoidancemethods for mobile robots consideronly the kinematics of a robot, without taking
dynamics into account [10]. This is legitimate at speedswhere robots can stop almost
instantaneously. However, at velocities of up to 163cm/sec, inertia and torque limits impose
constraints on robot motion, which may not be neglected.To control the robot in tight run-
time conditions, this module is reactive in that it considersonly a small number of recent
sensorreadings.

Minerva's collision avoidancemethod, called � DWA is described in depth in [38]. It has
been directly adopted from the Rhino software [15]; therefore we will only sketch it here.
In essence,the input to � DWA is raw proximit y sensorreadingsalong with a desiredtarget
location, basedon which � DWA setsthe robot's velocity (translation and rotation). It does
this by obeying a collection of constraints, which comein two 
a vors: hard and soft. Hard
constraints establish the basic safety of the robot (e.g., the robot must always be able to
come to a full stop before impact) and they also expressdynamic constrains (e.g., torque
limits). Soft constraints are used to trade o� the robot's desire to move towards the goal
location, and its desireto move away from obstaclesinto open space.In combination, these
constraints ensuresafeand smooth local navigation.

A key issuein collision avoidanceis invisible hazards. Recall that certain hazards,such as
downward escalators,are invisible to Minerva's sensors;yet it is essential that the robot avoid
them. Thesehazardsarepart of the map, wherea personhasmarkedthem, soavoiding them
requires the collision avoidance to translate map coordinates into local robot coordinates.
At �rst glance,one might be tempted to perform this translation using a simple geometric
transformation, which considersthe robot's most likely position ŝt = argmaxst

bt (st ) only.
However, such an approach is brittle in the face of uncertainty. It would also fail to take
advantage of the probabilistic nature of Minerva's localization approach.

Rather than relying on a single estimate of position for avoiding invisible hazards,Min-
erva employs a safer rule that guarantees the robot's safety with high probabilit y, even if
the robot is highly uncertain as to where it is. The basic idea is to avoid placesthat with
probabilit y > 0:01 are hazardous.This is achieved by adding \virtual" rangemeasurements
to the physical measurements, which with high probabilit y (> 0:99) are shorter than an
actual noise-freemeasurement of the distance to the nearesthazardousplace.
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One of the advantages of the probabilistic framework is that the computation of such
virtual measurements mathematically straightforward. Let us considerthe virtual measure-
ment at angle � relative to the robot. Let � (�; st ; m) denote the distance to the nearest
invisible hazard in the direction � , assumingthat the robot's pose is st . Since � assumes
knowledgeof the robot's pose,it is easily computed using ray tracing. In practice, of course,
onedoesnot know the posest ; instead, all oneis given is the posterior bt (st ). The following
term calculatesthe probabilit y that our noise-freevirtual sensorwould return a measurement
o�t that is larger than a, under the belief bt (st ):

p(o�t > a) =
Z

I � ( �;s t ;m )>a bt (st ) dst (14)

Here I denotesthe indicator function which is 1 i� its argument is true. If we chosea virtual
sensormeasurement a for which p(o�t > a) � 0:99, we can be 99%-certain that the \true"
distance to the nearesthazardousregion in the direction � is larger than a. Put di�eren tly ,
our approach generatesvirtual measurements

sup
a

f p(o�t > a) � 0:99g (15)

by maximizing a under the constraint that the true distance is underestimated with prob-
abilit y at least 99%. Virtual measurements are generated for all angles � , at an angular
resolution of 2 degrees.Using thesevirtual measurements, the robot is safewith probabilit y
99%, even though it may be uncertain as to where it is relative to the map. This approach,
which takesadvantage of the explicit representation of uncertainty in the robot's poseesti-
mate, was found to be essential for ensuring the robot's safety, both in the Rhino and the
Minerva project [15].

5.2 Motion Planning

Minerva's motion planner computes globally consistent motion commandsthat guide the
robot from one exhibit to the next. Uncertainty plays a major role in Minerva's motion
planning algorithm. While Rhino operated in a narrow museum,always in safeproximit y
su�cien tly many known objects to guaranteeaccuratelocalization, the Smithsonianmuseum
contained a large, open, featurelessregion in its center. Here the danger of getting lost is
signi�cant, speci�cally at peak opening hours where this spaceis �lled with hundreds of
people. Thus, to minimize the danger of getting lost, Minerva's path planner seeksthe
proximit y of known obstacles.Minerva's motion planner is called a coastal planner [80, 81].
The analogy is to ships, which typically stay closeto the coast to avoid getting lost (unless
they are equipped with a global positioning system).

Possibly the most general framework for probabilistic planning is known as partial ly
observableMarkov decision processes, or in short POMDP [70, 95, 97]. Recently , POMDPs
have becomepopular in AI [53, 63]. POMDPs addressthe problem of choosingactions soas
to minimize a scalarcost function, denotedC(s). In robot motion planning, we useC(s) = 0
for goal locations s, and � 1 elsewhere. Since reaching a goal location typically requires a
whole sequenceof actions, the control objective is to minimize the expected cumulative cost:

J =
t + TX

� = t +1

E[C(s� )]: (16)
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Here the expectation is taken over all future states. T may be 1 , in which casecost is often
discounted over time by an exponential factor.

The basic idea of POMDPs is to construct a value function in belief space, using a
generalizedversion of value iteration [7, 48]. A value function, denoted by V , measuresthe
expected cumulativ e cost if onestarts in a state s drawn according to the belief distribution
b, and acts optimally thereafter. Thus, the value V(b) of the belief state is the best possible
cumulativ e costsone can expect for being in b. This is expressedas

V(b) =
Z t + TX

� = t +1

E[C(s� )jst = s] b(s) ds: (17)

Following [7, 99], the value function can be computed by recursively adjusting the value of
individual belief states b according to

V(b)  � min
a

Z
[V(b0) + C(b0)] p(b0ja; b;m) db0; (18)

which assignsto V (b) the expected value at the next belief, b0. Here the immediate cost
of a belief state b0 is obtained by integrating over all states C(b0) =

R
C(s0) b0(s0) ds0.

The conditional distribution p(b0ja; b;m) is the belief spacecounterpart to the next state
distribution, which is obtained as follows:

p(b0ja; b;m) =
Z

p(b0jo0; a; b;m) p(o0ja; b;m) do0; (19)

where p(b0jo0; a; b;m) is a Dirac distribution de�ned through Equation (4), and

p(o0ja; b;m) =
Z Z

p(o0js0; m) p(s0ja; s;m) b(s) ds0 ds: (20)

OnceV hasbeencomputed, the optimal policy is obtained by selectingactionsthat minimize
the expected V-value over all available actions:

� (b) = argmin
a

Z
V(b0) p(b0ja; b;m) db0: (21)

While this approach de�nes a mathematically elegant and consistent way to compute the
optimal policy from the known densities p(s0ja; s;m) and p(o0js0; m)|whic h are in fact
the samedensitiesusedin mapping and localization|there are two fundamental problems.
First, in contin uous domains the belief space,which is the spaceof all distributions, is an
in�nitely dimensional space.Consequently , no exact method exists for calculating V in the
generalcase.Second,even if the state spaceis discrete|whic h is commonly assumedin the
POMDP framework|the computational burden can be enormous. This is becausefor state
spacesof size n, the corresponding belief spaceis a (n � 1)-dimensional contin uous space.
The best known solutions, such as the witness algorithm [53], can only handle problems of
the approximate sizeof 100states, and a planning horizon of no more than T = 5 steps. In
contrast, state spacesin robotics routinely possessorders of magnitude more states, even
under crude discretizations. This makesapproximating imperative.

Coastal navigation is a POMDP algorithm that relieson an approximate representation
for belief states b. The underlying assumption is that the exact nature of the uncertainty
is irrelevant for action selection; instead, it su�ces to know the degree of uncertainty as
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(a) (b)

Figure 11: Coastal plans: the rob ot activ ely seeksthe proximit y of obstacles to impro ve its localization.
The large open area in the center of the Smithsonian museum is approximately 20 meters wide and usually
crowded with people.

expressedby the entropy of a belief state H [b]. Thus, coastal navigation represents belief
states by the following tuple:

�b = hargmax
s

b(s); H [b] i : (22)

While this approximation is coarse,it causesvalue iteration to scaleexponentially better to
large state spacesthan the full POMDP solution, while still exhibiting good performancein
practice [80, 81].

Figure 11 shows an example tra jectory calculated by the coastal navigation algorithm
for the center region of the museum. The goal of motion is to reach a target location
with high probabilit y. By consideringuncertainty, the coastal planner generatespaths that
actively seekthe proximit y of known obstaclesso as to minimize the localization error|at
the expenseof an increasedpath length when comparedto the shortest path. Experimental
results described elsewhere[81] have shown that the successrate of the coastal planner is
superior to conventional shortestpath plannersthat ignore the inherent uncertainty in robot
motion.

5.3 Mission Planning

Minerva's high-level controller performs two important tasks:

1. During everyday normal operation, it schedules tours and monitors their execution.
The target duration for tours wassix minutes,which wasdeterminedto be the duration
the averagevisitor would enjoy following the robot. Unfortunately, the rate of progress
depends critically on the number and the behavior of the surrounding people. This
makesit necessaryto composetours on-the-
y .

2. The high-level controller also has to monitor the execution of tours, and change the
courseof actions when an exception occurs. Examples include the battery voltage,
which, if below a critical level, forcesthe robot to terminate its tour and return to the
charger. An exception is also triggered when the con�dence of Minerva's localization
routines drop below a critical level (luckily an extremely rare event), in which casethe
tour must temporarily be suspendedto invoke a strategy for re-localization [5].
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average min max
static 398 � 204 sec 121 sec 925 sec
with learning 384 � 38 sec 321 sec 462 sec

Table 2: This table summarizes the time spent on individual tours. In the �rst row, tours were pre-comp osed
by static sequencesof exhibits; in the second row, tours were composedon-the-
y , based on a learned model
of tra vel time, successfully reducing the variance by a factor of 5.

Minerva's plan-based controller, a structured reactive controller (sr c) [3] built on top of
RPL [67], is a collection of concurrent, percept-driven control routines that speci�es routine
activities and can adapt itself to non-standard situations. Minerva executesthree kinds
of high-level control processes:scheduled tour plans that work well in standard situations,
monitoring processesthat detect non-standard situations, and plan adaptors that are re-
sponsible for managing the tour plans during their execution. Thus, Minerva carries out
museumtours with the constraint that, when circumstanceschange,a runtime plan adapta-
tion processis triggered. For example, such a situation might occur when the robot su�ers
an unexpected delay while traveling from one exhibit to another, or when tour requestsare
added or modi�ed on-line. During the 14 day-long deployment Minerva's plan-basedcon-
troller performedroughly 3,200executiontime plan revisions,including the insertion of plans
for new user requests,the removal of plans for accomplishedrequests,and tour reschedul-
ing. The controller communicated with the rest of the software using HLI, a component
of GOLEX [46]. More recently , we have extended this framework to include probabilistic
representations [6, 4]; however, those extensionswerenot usedin the Minerva project.

To meet the desiredlength for individual tours, Minerva' missionplanner composestours
on-the-
y . To do so, it learns the time required for moving betweenpairs of exhibits, based
on data recorded in the past (using the empirical mean as estimator). After an exhibit
is explained, the interface choosesthe next exhibit based on the remaining time. If the
remaining time is below a threshold, the tour is terminated and Minerva instead returns to
the center portion of the museum. Otherwise, it selectsexhibits whosesequencebest �t the
desiredtime constraint.

Table 2 illustrates the e�ect of dynamic tour decomposition on the duration of tours.
Minerva's environment contained 23 designatedexhibits, and there were77 sensiblepairwise
combinations betweenthem (certain combinations wereinvalid sincethey did not �t together
topic-wise). In the �rst days of the exhibition, all tours werestatic. The �rst row in Table 2
illustrates that the timing of those tours variessigni�cantly (by an averageof 204seconds).
The averagetravel time, shown in Table 3, was estimated using 1,016 examples,collected
during the �rst days of the project. The secondrow in Table 2 shows the results when tours
were composeddynamically. Here the varianceof the duration of a tour is only 38 seconds.
Minerva's high-level interfacealso madethe robot return to its charger periodically, so that
we could hot-swap its batteries.

6 Human Rob ot In teraction

Interaction with peopleis Minerva's primary purpose. It is thereforesurprising that previous
tour-guide robots' interactive capabilities wererather limited. The type of interaction faced
by a tour-guide robot is spontaneous and short-term: Visitors of the Smithsonian museum
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 26 68 14 28
2 23 38 13
3 81 66 51 66 60
4 76 22
5 62 49
6 41 44
7 44 1 55 42 51
8 44 63
9
10
11 34 16 69
12 61 53 69 72 32 87 55
13 28
14 33 39
15 60
16 46 68
17 59 13 57
18 46 42 31 36 31 12
19 1 25 58 69 12
20 57 62 37
21 55 24 20 15 74
22 208 66 46 38 38 23 56 39
23 113 76 59 24 46 59

Table 3: Time (in sec) it tak esto move from one exhibit to another, estimated from 1,016 examples collected
in the museum. These times, plus the (kno wn) time used for explaining an exhibit, form the basis for the
decision-theo ret ic planner.

typically had no prior exposure to robotics technology, and they could not be instructed
beforehandasto how to operate the robot. The robot often interacts with crowds of people
aswell asindividual visitors. In them museum,most peoplespent lessthen 15minutes(even
though somespent hours or even days). This type of interaction is characteristic for robots
that operate in public places,such as receptionists, information kiosks, and merchandising
robots. It di�ers signi�cantly from the majorit y of interactive modes studied in the �eld,
which typically assumelong-term interaction with a single subject.

To maximize Minerva's e�ectiv eness,we opted to givethe robot human-likefeaturessuch
as a motorized face,a neck, and a simple �nite state machine emulating \emotions," and to
usereinforcement learning to shape her interactive skills.

6.1 The Face

Figure 12 shows Minerva's face. To engagemuseumvisitors, we sought to present as recog-
nizable and intuitiv ean interfaceaspossible[11, 87]. Obviously, the faceis only a caricature,
containing only schematic featuresrelated to the expressionof simple emotions. It contains,
we believe, those elements necessaryfor the degreeof expressionappropriate for a tour-
guide robot. A �xed mask would be incapable of visually representing mood, and a highly
accuratesimulation of a human facewould contain numerousdistracting details beyond our
control. A physical face was deemedmore appropriate than a simulated one displayed on
a computer screen,becausepeoplecan view it from arbitrary angles(even from the back),
letting museumvisitors seeit without standing directly in front of the robot. As Figure 12
documents, an iconographicfaceconsistingof two eyeswith eyebrows and a mouth is almost
universally recognizableand can portray the range of simple emotions useful for tour-guide
interaction.
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(a)

(b) (c)

Figure 12: Minerv a's face with (a) happy, (b) neutral, and (c) angry facial expressions.

6.2 Emotional States

When giving tours, Minerva usesits face, its head direction, and its voice to communicate
with people,soasto maximize its progressand pleasethe audience.A stochastic �nite state
machine shown in Figure 13 is employed to model simple emotional states (moods), which
allow the robot to communicate its intent to visitors in a social context familiar to people
from human-human interaction [11, 73, 74]. Moodsrangefrom happy to angry, dependingon
the persistenceof the peoplewho block its path. When happy, Minerva smilesand politely
asks for people to step out of the way; when angry, its face frowns and the robot's voice
soundsangry. Most museumvisitors had no di�cult y understanding the robot's intention
and emotional state. In fact, the abilit y to exhibit such extremely caricatured pseudo-
emotions proved to be one of the most appreciated aspects of the entire project.

6.3 Learning to A ttract People

How can a robot attract attention? Sincethere is no obvious answer, we applied an on-line
learning algorithm. More speci�cally , Minerva usesa memory-basedreinforcement learning
approach [99] (with no delayed reward). Reinforcement is received in proportion of the
proximit y of people as determined by Minerva's people �nding module; coming too close,
however, leads to a distinct penalty for violating Minerva's space. Minerva's behavior is
conditioned on the current density of people. Possibleactions include di�eren t strategies
for head motion (e.g., looking at nearest person), di�eren t facial expressions(e.g., happy,
sad, angry), and di�eren t speech acts (e.g., \Come over," \do you like robots?"). Learning
occurs during one-minute-long, dedicatedmingling phases, which take place between tours.
During learning, the robot chooseswith high probabilit y the best-known action (so that it
attracts as many people as possible); however, with small probabilit y the robot choosesa
random action, to explorenew forms of interaction. This aproach is similar to the literature
on the exploration-exploitation dilemma in the k-arm bandit literature [101].

During the two weeksin the Smithsonian museum, Minerva performed 201 attraction
interaction experiments, each of which lasted approximately 1 minute. Over time, Minerva
developed a \p ositive attitude" (saying friendly things, looking at people, smiling). As
shown in Figure 14, acts best associated with a positive attitude attracted the most people.
For example,when grouping speech acts and facial expressionsinto two categories,friendly
and unfriendly, we found that the former type of interaction performed signi�cantly better
than the �rst (with 95% con�dence). However, peoplesresponsewas highly stochastic and
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Figure 13: State diagram of Minerv a's emotions during tra vel. \F ree" and \blo cked" indicate whether a
person stands in the rob ot's path.

the amount of data that we were able to collect during the exhibition is insu�cien t to yield
statistical signi�cance in most cases.Hence,we are unable to comment on the e�ectiv eness
of individual actions.

6.4 Web In terface

One of the goalsof the project wasto enableremote usersto establisha virtual telepresence
in the museum, using the Internet. Therefore, while in the Smithsonian museum Minerva
wasconnectedto the Webat http://www.cs.cmu. edu/ � minerva, whereWebusersall over
the world controlled Minerva and could look through its eyes. In addition, a stationary zoom
cameramounted on a pan/tilt unit enabledWeb usersto watch Minerva and nearby visitors
from a distance.

While the museum was open to visitors, Minerva was controlled predominately by the
visitors of the museum,which could select tours using a touch-sensitive screenmounted at
Minerva's back. Every third tour, however, was selectedby Web usersvia a voting scheme:
Votesfor individual tours werecounted, and the most popular tour waschosen.At all times,
the web page displayed current camera imagesrecorded by Minerva and by the o�-b oard
camera,and a museummap with the robot's position. To facilitate updating the position of
Minerva several times a second,Web usersdownloaded a robot simulator written in Java,
and usedTCP communication and server-push technology to communicate the position of
the robot in approximately real time [88].

During several specialscheduledInternet events, all of which took placewhenthe museum
wasclosedto visitors, Webusersweregivenexclusivecontrol of the robot. Using the interface
shown in Figure 15a, they could schedule target points, which the robot approached in the
order received. The number of pending target points was limited to �v e. All rows in Table 4
marked \W eb only" correspond to times where Web usersassumedexclusive control over
the robot. In onecase,Minerva moved at an averagevelocity of 73.8cm/sec. Its maximum
velocity was163cm/sec, which wasattained frequently . Such high velocities, however, were
only attained when the museum was closed. When visitors were around, the speed was
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Figure 14: Statistics of people's response to di�eren t styles of interaction (from friendly on the left to
upset/demandin g on the righ t). The data were input to a reinforcement learning algorithm, which learned
interaction patterns on-line.

reduced to less than 70 cm/sec (walking speed) to avoid people perceiving the robot as a
threat.

7 Statistics

Table 4 surveysthe overall statistics of Minerva's 13 days-longperformance. As can be seen,
the robot traveleda total of 44 km, at top speedof 163cm/sec and an averagespeedof 38.8
cm/sec. Minerva's speedwas limited to 70 cm/sec during opening hours, but limited only
by hardware limitations when the museumwas closedand the robot wascontrolled through
the Internet. Figure 15b shows the robot's path between two battery charges; a battery
charge lasted approximately two hours.

Since the Rhino robot was developed by the same research team and employed many
of the samebasic navigation modules, a comparison between both robots seemsin order.
Navigation in the Smithsonian museum posed completely new challenges that were not
present in the DeutschesMuseum Bonn. Minerva's environment was an order of magnitude
larger, with a particular challengearising from the large open area in the center portion of
the museum. Minerva alsohad to cope with an order of magnitude more peoplethan Rhino.

To accommodate thesedi�culties, Minerva's navigation systemwas more sophisticated.
In particular, Rhino did not use camera images for localization, and its motion planner
did not consider information gain when planning paths. In addition, Rhino was supplied
with a manually derived map; it lacked the abilit y to learn maps from scratch. We believe
that these extensionswere essential for Minerva's success.Rhino also lacked the abilit y to
composetours on-the-
y , and it was also unable to detect exceptionssuch as battery drain
(which causedproblems) [15].

While in the Rhino project, we carefully counted the number of collisions and other
failures, this was impossiblein Minerva's case,sincewe wereoften not present during robot
operation. However, we recall two occasionsat which the robot lost its position, both times
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(a) (b)

Figure 15: (a) Web control interface. Users can authen ticat e themselves in on the left side of the windo w,
and subsequentl y specify target locations by clicking in the map. The map shows curren t rob ot position,
pending target locations, and a dialogue box displays the curren t speed of the rob ot. On the righ t. users
can watch images recorded using the rob ot's camera (top image) and by a stationary camera with zoom
mounted on a pan/tilt unit (b ottom image). (b) Multi-hour path of the rob ot in the museum.

involving huge crowds of peoplethat persistently blocked virtually all of the robots sensors
for extended periods of time (e.g., 20 minutes). A misadjusted low-level motion controller
in the robot's base,which was inaccessibleto us, madethe robot's motion a bit jerkier than
that of Rhino. However, this did not a�ect Minerva's overall performance.

A key di�erence between both robots relates to their interactive capabilities. As men-
tioned above, Rhino's interaction was more rudimentary. It lacked a face, did not exhibit
\emotional states," and it did not actively attract or engagepeople. As a result, Minerva
was much more e�ectiv e in attracting peopleand making progress.When comparedto the
Rhino project, we consistently observed that people cleared the robot's path much faster.
Wefound that both robots maintained about the sameaveragespeed(Minerva: 38.8cm/sec,
Rhino: 33.8cm/sec), despitethe fact that Minerva's environment wasmore crowded. These
numbers illustrate the e�ectiv enessof Minerva's interactive approach to making progress.

In comparisonwith Rhino, peoplealso appearedmore satis�ed and amused. According
to a poll involving 63 people(36 male, 27 female),93.7%likedMinerva, while the remaining
6.3% were undecided. When asked whether people were satis�ed with the robot, 77.8%
answered yes, 15.9% were undecided, and only 6.3% responded with no. 39.7% of the
visitors would be willing to pay $1,000or more, if they could purchasea robot like Minerva
(with the samelevel of capability) for their private home. When asked what level of animal
(from a list of �v e options) Minerva's intelligencewas most comparableto, we received the
following answers: human: 36.9%; monkey: 25.4%; dog: 29.5%; �sh: 5.7%; amoeba:2.5%.
Unfortunately, we did not ask peoplethe samequestionsat the Rhino exhibition. A similar
evaluation of the e�ectiv enessof robot emotions for robots operating in public placescan
be found in [73, 74].

Minerva also possessedan improved Web interface, which enabledWeb usersto specify
arbitrary target locations instead of choosing locations from a small pool of pre-speci�ed
locations. Rhino's Web interfaceprescribed a small set of 13possibletarget locations, which
corresponded to designatedtarget exhibits. When under exclusive Web control, Minerva
was more than twice as fast as Rhino (seeTable 4). In everyday operation, however, the
maximum speedof both robots was limited to the samespeed.
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date uptime tra vel time distance avg. speed tours exhibits mode
Aug 24 7:16:08 2:34:36 2,881.13 m 31.3 cm/sec 52 174
Aug 25 7:41:52 2:17:05 2,725.90 m 33.1 cm/sec 55 169
Aug 26 6:57:35 2:39:24 2,642.23 m 27.6 cm/sec 28 102
Aug 27 5:40:58 1:33:00 1,147.12 m 31.7 cm/sec 53 203

1:56:21 0:50:55 1,755.98 m 57.5 cm/sec 28 104 Web only
Aug 28 6:48:59 2:08:14 2,416.15 m 31.4 cm/sec 54 192
Aug 29 5:40:23 1:50:22 2,436.92 m 36.7 cm/sec 59 219
Aug 30 6:42:36 2:17:58 3,305.44 m 39.9 cm/sec 66 231
Aug 31 7:25:57 2:09:02 3,372.91 m 43.6 cm/sec 77 258
Sept 1 7:11:54 2:22:40 3,707.19 m 43.3 cm/sec 61 230
Sept 2 4:28:07 1:27:33 1,954.19 m 37.2 cm/sec 37 137
Sept 3 9:56:53 3:25:08 5,332.76 m 43.3 cm/sec 54 203
Sept 4 1:13:15 0:52:34 2,143.86 m 68.0 cm/sec 103 Web only

6:49:35 2:04:49 2,611.71 m 34.9 cm/sec 48 168
2:17:04 1:17:00 3,411.41 m 73.8 cm/sec 175 Web only

Sept 5 6:15:46 1:42:34 2,173.90 m 35.3 cm/sec 49 156
total 94:23:20 31:32:54 44,018.8m 38.8cm/sec 620 2,668

Table 4: Summary statistics of Minerv a's operation. The rows labeled \W eb only" indicate times when the
museum was closed to the public, and Minerv a was under exclusive Web control. At all other times, Web
users and museum visitors shared the control of the rob ot. Minerv a's top speed was 163 cm/sec.

8 Related Work

There is a huge body of related work, most of which is systematically surveyed in a recent
article on Rhino [15] (over 160 references). Probably the �rst tour-guide robot was Ian
Horswill's Polly [47], a small mobile robot that guided visitors through the AI Lab at MIT.
To our knowledge, Rhino was the �rst museum tour-guide robot [15]; it operated in the
Fall of 1997. Rhino inspired Sage/Chips (the name was changed while the robot was in
operation) [72], which had its debut in 1998in the CarnegieMuseum of Natural History in
Pittsburgh, PA (seemap in Figure 8). Sage,or Chips, hasnow operated with interruptions
for approximately two years. However, its environment hasbeenmodi�ed signi�cantly to aid
the navigation, and it also lack a Web interface. Others have developed proto-t ype robots
that interact with peopleat fairs and trade shows (e.g., [73, 74, 86]).

Web interfaceshave gained seriousattention in robotics throught the last years, since
they allow people to tele-operate a robot at a distant site. Three early systems, whose
interfaceswere designedalong these lines, are the Mercury Project [40] installed in 1994,
Australia's Tele-robot on the Web[100], which cameon-line nearly at the sametime, and the
Tele-Garden[41], which replacedthe Mercury robot in 1995. While the Mercury robot and
the Tele-GardenenabledWeb usersto perform di�eren t typesof digging tasks, excavation
of artifacts and watering and seeding
o wers, the Tele-robot on the Web gave Web users
the opportunit y to build complex structures from toy blocks. The PumaPaint Project [98]
enablespeopleto draw a painting by controlling a PUMA 760 robot arm.

Minerva's Web interfacesborrow someideasfrom Xavier [93, 92], one of the �rst inter-
active mobile robots controllable via the Web. Xavier can be advisedby Web usersto move
to an o�ce and to tell a knock-knock joke after arrival. Xavier collects requestso�-line and
processesthem during special working hours. It informs the Webuserafterwards about task
completion via email. The Web interface relies on client-pull and server-push techniques to
provide imagestaken by the robot as well as a map indicating the robot's current position
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in regular intervals. In contrast to Xavier, however, our robots provide status information
with smooth visualizations. Our interfacesimmediately react to requestsand inform users
instantly about the current scheduleof the robot. KephOnTheWeb [84, 69], another mobile
robot on the Web, allows virtual visitors to move a Khepera robot and to control several
cameras,using a set of click-able maps. There is also a huge list of Web cameras,which
deliver imagestreamsto the Web. Someof thesecameras,such as[42], which is installed on
a robot arm in a museum,can even be controlled by virtual visitors. Other Web interfaces
can be found in a recent magazineissue[90].

The last few decadeshave led to a 
urry of di�eren t software design paradigms for
autonomousrobots. Early work on model-basedrobotics often assumedthe availabili ty of
a complete and accurate model of the robot and its environment, relying on planners (or
theorem provers) to generateactions [17, 59, 89]. Such approachesare often inapplicable to
robotics dueto the di�cult y of generatingmodelsthat aresu�cien tly accurateand complete.
Recognizingthis limitation, someresearchershaveadvocatedmodel-freereactiveapproaches.
Instead of relying on planning, theseapproachesrequire programmersto program controllers
directly. A popular exampleof this approach is the \subsumption architecture" [12], where
controllers arecomposedof small �nite state automata that map sensorreadingsinto control
while retaining a minimum of internal state. Someadvocatesof this approach went as far as
refusing the need for internal models and internal state altogether [12, 20]. Observing that
\the world is its own best model" [13], behavior-basedapproachesusually rely on immediate
sensorfeedback for determining a robot's action. Obvious limits in perception (e.g., robots
cannot seethrough walls) poseclear boundaries on the type of tasks that can be tackled
with this approach. This leadsus to concludethat while the world might well be its most
accurate model, it is not necessarilyits most accessibleone [102]. And accessibility matters!

The probabilistic approach is somewherebetween these two extremes. Probabilistic
algorithms rely on models, just like the classicalplan-basedapproach. For example,Markov
localization requires a perception model p(ojs;m), a motion model p(s0ja; s), and a map
of the environment. However, since these models are probabilistic, they only need to be
approximate. This makes them much easier to implement (and to learn) than if we had
to meet the accuracy requirements of traditional approaches. Additionally , the abilit y to
acknowledge existing uncertainty and even anticipate upcoming uncertainty in planning
leadsto qualitativ ely new solutions in a rangeof robotics problems,as demonstratedin this
article.

Probabilistic algorithms are similar to behavior-based approaches in that they place a
strong emphasison sensorfeedback. Becauseprobabilistic modelsare insu�cien t to predict
the actual state, sensormeasurements play a vital role in state estimation and, thus, in
determining a robot's actual behavior. However, they di�er from behavior-basedapproaches
in that they rely on planning, and in that a robot's behavior is not just a function of a small
number of recent sensorreadings. As an examplethat illustrates the importanceof the latter,
imagine placing a mobile robot in a crowded place full of invisible hazards! Surely, adding
more sensorscan remedy the problem. However, such an approach is expensive at best,
but more often it will be plainly infeasible due to lack of appropriate sensors. Minerva's
predecessorrobot Rhino, for example, was equipped with �v e di�eren t sensorsystems|
vision, laser, sonar, infrared and tactile|y et it still could not perceive all the hazardsand
obstaclesin this fragile environment with the necessaryreliabilit y (see[15] for a discussion).
Thus, it seemsunlikely that a reactive approach could have performed anywhere nearly as
reliably and robustly in this task domain.
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9 Discussion

This article described the software architecture of a mobile tour-guide robot, which suc-
cessfully operated for a two-week time period at the Smithsonian's National Museum of
American History. During more than 94 hours of operation (31:5 hours of motion), Minerva
gave 620 tours and visited 2,668exhibits. The robot interacted with thousandsof people,
and traversedmore than 44 km. Its averagespeedwas38.8cm/sec, and its maximum speed
was 163 cm/sec. The map learning techniques enabledus to develop the robot in 3 weeks,
from the arrival of the baseplatform to the opening of the exhibition. A Web interfacegave
peopledirect control of the robot when the museumwas closedto the public.

So what did we learn? Minerva's software waspervasively probabilistic. As noted in the
introduction, the probabilistic paradigm pays tribute to the inherent uncertainty in robot
perception, relying on explicit representations of uncertainty when determining what to do.

Our results illustrate that probabilistic algorithms are well suited for high-dimensional
estimation and learning problems; in fact, we know of no comparable algorithm that can
solve problemsof equal hardnessbut doesnot explicitly addressthe inherent uncertainty in
perception. Our results also show favorably performance in planning and reactive control
using probabilistic algorithms. Probabilistic representations wereessential or reliable local-
ization, and the robot's abilit y to safely avoid downward escalatorsand other \in visible"
hazards in the denselycrowded museum.

Weconjecturethat the probabilistic paradigm is a general,powerful approach to robotics,
highly applicable to a wholerangeof robot applications involving real-world sensing.Sensors
are inherently limited. Environments are dynamic. Models are inaccurate. Therefore,
uncertainty plays a predominant role in robotics. We hope that the results described in
this paper shed light onto the appropriatenessof the probabilistic approach to robotics,
illustrating how a rangeof challengingproblemscanbe solvedin a mathematically consistent
way.
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